

TESVOLT GmbH • Am Alten Bahnhof 10 • 06886 Lutherstadt Wittenberg
Telefon: 0800 – TESVOLT • E-Mail: info@tesvolt.com
Registergericht: Amtsgericht Stendal HRB 20947
Geschäftsführer: Daniel Hannemann M.A., Simon Schandert B.Eng.
TESVOLT.COM

EG-Konformitätserklärung

Herstellererklärung gemäß der EG Niederspannungsrichtlinie 2006/95/EG (NSR) und der elektromagnetischen Verträglichkeit 2004/108/EG (EMV).

Hiermit erklären wir, dass die unten aufgeführten Produkte den grundlegenden Sicherheits- und Gesundheitsanforderungen gemäß den oben genannten Richtlinien entsprechen. Bei einer mit uns nicht abgestimmten Änderung des Produktes verliert diese Erklärung ihre Gültigkeit.

Die angewandten harmonisierten Normen sind in der folgenden Tabelle aufgeführt.

Produkt	Angewandte Normen u	nd Spezifikationen
	Störfestigkeit (EMV-Richtlinie Artikel 5)	EN 61000-6-1 EN 61000-6-2
TV Li 10 TV Li 20	Störaussendung (EMV-Richtlinie Artikel 5)	EN 61000-6-3 EN 61000-6-4
TV Li 30 TV Li 40	Netzrückwirkung (EMV-Richtlinie Artikel 5)	EN 61000-3-11 EN 61000-3-12
TV Li 60 TV Li 120	Gerätesicherheit (NSR Artikel 2)	EN 62109-1 EN 62109-2
TLC 120 TLC 250 TLC 370 TLC 500	Niederspannungsrichtlinie Sicherheitsanforderungen an Batterien und Batterieanlagen	VDE-AR-N 4105 EN 50272-1 EN 50272-2
TLC 1000	USV	EN 62040-1
123 1000	Ausrüstung von Starkstromanla- gen mit elektronischen Betriebs- mitteln	EN 50178

Daniel Hannemann, M.A. Managing Director

TESVOLT GmbH

Simon Schandert, B.Eng. Director of Engineering

TESVOLT GmbH

Stand: 24.03.2015

TESVOLT GmbH • Am Alten Bahnhof 10 • 06886 Lutherstadt Wittenberg Telefon: 0800 - TESVOLT • E-Mail: info@tesvolt.com Registergericht: Amtsgericht Stendal HRB 20947 Geschäftsführer: Daniel Hannemann M.A., Simon Schandert B.Eng. TESVOLT.COM

Herstellererklärung

Konformitätsnachweis entsprechend FNN Dokument "Anschluss und Betrieb von Speichern am Niederspannungsnetz"

Anforderungen aus dem FNN Dokument, 4.10:

Die unten genannten Speichersysteme der TESVOLT GmbH entladen keine in der Batterie gespeicherte Energie in das öffentliche Netz. Die zwischengespeicherte Energie wird nur innerhalb der Kundenanlage verwendet.

Anforderungen aus dem FNN Dokument, 4.11:

Zur Verhinderung der Einspeisung wird der Energiefluss am Netzanschlusspunkt durch einen Zähler (Sensor des Speichersystems) gemessen. Diese Daten werden über eine Kommunikations-Komponente an den Batteriewechselrichter übermittelt.

TESVOLT GmbH bestätigt, dass ein Funktionstest des Sensors des Speichersystems stattgefunden hat. Es wird weiterhin die ordnungsgemäße Funktion des Sensors des Speichersystems bestätigt.

Produkt	Kommunikationskomponente zwischen Speichersystem und Zähler	Zähler
TV Li 10		
TV Li 20		
TV Li 30		
TV Li 40		
TV Li 60		
TV Li 120	Sunny Home Manager	SMA Energy Meter
TLC 120		
TLC 250		
TLC 370		
TLC 500		*
TLC 1000		

Daniel Hannemann, M.A. Managing Director

TESVOLT GmbH

Simon Schandert, B.Eng. Director of Engineering

TESVOLT GmbH

Stand: 24.03.2015

TESVOLT GmbH • Am Alten Bahnhof 10 • 06886 Lutherstadt Wittenberg
Telefon: 0800 – TESVOLT • E-Mail: info@tesvolt.com
Registergericht: Amtsgericht Stendal HRB 20947
Geschäftsführer: Daniel Hannemann M.A., Simon Schandert B.Eng.
TESVOLT.COM

Konformitätsnachweis des im Wechselrichter integrierten NA-Schutz

Hersteller: TESVOLT GmbH

Netzanschlussregel:

VDE-AR-N 4105: 2011-08

"Erzeugungsanlagen am Niederspannungsnetz"

Der in den Batteriewechselrichtern integrierte Netz- und Anlagenschutz erfüllt die Anforderungen der

VDE-AR-N 4105.

Die Einstellwerte und die Abschaltzeiten sind wie gefolgt:

Schutzfunktion	Einstellwert	Auslösewert	Auslösezeit*	NA-Schutz
Spannungsrückgangsschutz	0,8 * U _n	184 V	200 ms	120 ms
Spannungssteigerungsschutz	1,1 * U _n	253 V	10 min	10 min
Spannungssteigerungsschutz	1,15 * U _n	264,5 V	200 ms	120 ms
Frequenzrückgangsschutz	47,5 Hz	47,5 Hz	200 ms	120 ms
Frequenzsteigerungsschutz	51,5 Hz	51,5 Hz	200 ms	120 ms

^{*}Die Auslösezeit umfasst den Zeitraum von der Grenzverletzung U/f bis zur Auslösung der integrierten Schalter.

Daniel Hannemann, M.A. Managing Director

TESVOLT GmbH

Simon Schandert, B.Eng. Director of Engineering

TESVOLT GmbH

Stand: 01.09.2014

Prüfbericht für Erzeugungseinheiten gemäß F.3 VDE-AR-N 4105 und VDE V 0124-100 für S I6.0H (SI 6.0H-11)

Auszug aus dem Prüfbericht zum Einheiten-Zertifikat Nr. 2014 "Bestimmung der elektrischen Eigenschaften" Messzeitraum: 16.01.2014 - 23.01.2014

Anlagentyp (EZE):	SI 6.0H-11	Herstellerangaben (EZE)	
Anlagenhersteller (EZE):	SMA Solar Technology AG	Anlagenart: Batteriewechselrichter	
	Sonnenallee 1	Wirkleistung: Nennleistung (Pn) bei Nennbedingungen (cos φ =1):	4,6 kW
	34266 Niestetal	Bemessungsspannung (Un):	230 V
		Bemessungstrom (In):	20 A

Wirk-/Blindleistun	Wirk-/Blindleistungsbereich (Ermittlung des Blindleistungbereiches und PEmax600 (PEmax) & SEmax600 (SEmax))												
Leistungsfaktor	Messwerte bei 100)% Un:	Messwerte bei 109	9% Un:									
cos φ	Wirkleistung	Scheinleistung	Wirkleistung	Scheinleistung	ermittelte maximale V	/erte:							
1	4,561 kW	4,563 kVA	4,561 kW	4,563 kVA	P Emax600 (P Emax):	4,561 kW							
0,9 υ	4,054 kW	4,508 kVA	4,061 kW	4,510 kVA	S Emax600 (S Emax):	4,601 kVA							
0,9 ü	4,151 kW	4,601 kVA	4,142 kW	4,595 kVA									

Wirkleistungsreduktion durch Sollwertvorgabe (Einstellgenauigkeit und Einstellzeit)

Einspeisemanagement wird laut FNN für Batterie-Wechselrichter nicht gefordert.

	Test mit mittlerer Leistung (40 - 60% Pn)					2,319	Test mit ho	Test mit hoher Leistung (>80% Pn)				Рм [kW]: 3,682	
	Leistungssollwert N		Mes	swert	Abw. v. Sollwert		Leistungssollwert		Messwert		Abw. v.	Sollwert	
Frequenz	[% PM]	[kW]	[% Рм]	[kW]	[% PEmax]	<10%	[% Рм]	[kW]	[% Рм]	[kW]	[% PEmax]	<10%	
50,21 Hz	100%	2,31	96,0%	2,23	1,8%	4	100%	3,67	97,0%	3,57	2,1%	4	
50,70 Hz	80%	1,86	76,9%	1,78	1,6%	4	80%	2,95	77,6%	2,86	1,9%	4	
51,15 Hz	62%	1,44	59,6%	1,38	1,2%	4	62%	2,28	60,1%	2,21	1,6%	4	
Wirkleistungsgradie	ent (nach Unter	rschreitung	von 50,2H:	z):	9,96%	[% PEmax/	min]		Bewertun	ıg (≤ 10% l	PEmax/min):	4	

Betriebspunkt der M	lessung:	Grenzwert aus	maximale Unsymetric	Bewertung				
P/Pn [%]	P/Pn [%] cos φ		IL1 - L2l	IL2 - L3I	IL3 - L1I	max Wert/Gren	nzwert [%]	
50%	1	4,6 kVA	0,00 kVA	0,00 kVA	0,00 kVA	0,0%	4	
50%	0,9υ	4,6 kVA	0,00 kVA	0,00 kVA	0,00 kVA	0,0%	4	
50%	0,9ü	4,6 kVA	0,00 kVA	0,00 kVA	0,00 kVA	0,0%	4	
100%	1	4,6 kVA	0,00 kVA	0,00 kVA	0,00 kVA	0,0%	4	
100%	0,9υ	4,6 kVA	0,00 kVA	0,00 kVA	0,00 kVA	0,0%	4	
100%	0,9ü	4,6 kVA	0,00 kVA	0,00 kVA	0,00 kVA	0,0%	4	

Test zum Ausfall bzw. zum Leistungsabfall eines Wechselrichters vom Typ SI6.0/8.0H sind nicht relevant, da:

¹⁾ bei Ausfall eines Wechselrichters, oder der Kommunikation zu einem der Wechselrichter, sich alle Wechselrichter vom Netz trennen

²⁾ alle Wechselrichter eines 3phasigen Systems an 1 DC-Quelle (Batterie) angeschlossen sind

Blindleistungsabo Blindleistunas-	<u> </u>	t (Sollwerte)			(30s Mitte	lwerte1			Δ cosΦ	عتالته	siger	Be-
vorgabe	cos φ	Leistung	U/Un	U [V]	P [W]	Q [VAR]	S [VA]	cos φ	ISoll-Istl		für cos φ	wertung
	του φ	Leisiong	0,91	209,5	2305,9	-15,5	2308,7	1,000	0,000	Deferen	ιοι cos φ	werlong
keine Vorgabe		4060%	1,0	230,2	2317,9	-4,1	2316,7	1,000	0,000			4
(cosφ im Bereich 0,95υ-0,95ü		PEmax	1,09	250,9	2328,0	1,7	2327,8	1,000	0,000			1
gemäß EN50438)	1,0		0,91	209,5	4156,3	3,6	4157,9	1,000	0,000	0,95υ	0,95ü	4
in der Regel für		100%	1,0	230,4	4562,3	23,0	4559,0	1,000	0,000			4
EZA ≤ 3,68 kVA		SEmax	1,09	251,0	4560,4	23,5	4562,3	1,000	0,000			4
			0,91	209,5	2307,3	746,9	2427,6	0,951	0,001			4
		4060% PEmax	1,0	230,2	2319,6	737,5	2435,8	0,953	0,003			4
	0.05"		1,09	250,9	2329,0	743,0	2447,0	0,953	0,003	0.04"	0.04"	4
Kennlinienvorgabe	0,95ü	100% SEmax	0,91	209,6	4196,9	1377,0	4415,5	0,950	0,000	0,94ü	0,96ü	4
des VNB			1,0	230,4	4370,5	1422,8	4594,5	0,951	0,001			4
(cosφ Bereich 0,95υ-0,95ü)		SEmax	1,09	251,0	4358,6	1449,1	4592,9	0,949	0,001			4
in der Regel für EZA > 3,68 kVA & ≤ 13,8 kVA		4060%	0,91	209,5	2307,66	-761,35	2432,56	0,950	0,000			4
		4000% PEmax	1,0	230,2	2319,77	<i>-77</i> 1,16	2445,08	0,949	0,001			4
	0,95u	Lindx	1,09	250,9	2328,95	-765,68	2451,98	0,950	0,000	0,94u	0,96υ	4
	0,930	100% · SEmax	0,91	209,5	4111,85	-1338,4	4324,65	0,951	0,001	0,740		4
			1,0	230,3	4293,16	-1401,1	451 <i>7,</i> 57	0,951	0,001			4
			1,09	251,0	4299,87	-1384,9	4518,27	0,952	0,002			4
		4060%	0,91	209,5	2305,72	1083,39	2550,38	0,905	0,005			4
		4000% PEmax	1,0	230,2	2321,43	1093,54	2565,58	0,905	0,005			4
	0.90ü	TEIIGX	1,09	250,9	2329,03	1095,97	2572,66	0,905	0,005	0.89ü	0,91ü	4
Kennlinienvorgabe	0,700	100%	0,91	209,6	4160,22	1987,99	4612,36	0,902	0,002	0,070	0,710	4
des VNB		SEmax	1,0	230,3	4149,59	1986,5	4598,98	0,902	0,002			4
(cosφ Bereich		O E Max	1,09	251,0	4140,01	1992,49	4596,13	0,901	0,001			\checkmark
0,90u-0,90ü)		4060%	0,91	209,5	2307,52	-1134,6	2573,43	0,898	0,002			\checkmark
in der Regel für		PEmax	1,0	230,2	2318,81	-1131,6	2579,14	0,899	0,001			\checkmark
EZA > 13,8 kVA	0,90u		1,09	250,9	2329,02	-1130	2588,58	0,900	0,000	0,89u	0,91u	4
	0,,00	100%	0,91	209,5	4043,18	-1966,6	4497,98	0,899	0,001	0,0,0	0,, 10	√
		SEmax	1,0	230,3	4056,98	-1958,5	4504,6	0,901	0,001	<u> </u>		4
		Jemax	1,09	250,9	4064,16	-19 <i>57</i> ,8	4512,58	0,901	0,001			\checkmark

Test zur Einstellgenauigkeit (Schrittweite 10%	6 P Emax im Bereich	20% P Emax	maxima	ıle Wirkleist	ung - bei en	ntsprechend	em cos φ)	
Wirkleistung P/PEmax [%] (Sollwert)	20%	30%	40%	50%	60%	70%	80%	90%
Wirkleistung P/PEmax [%] (Messwert)	20,01%	30,01%	40,14%	50,21%	60,06%	70,11%	80,05%	90,16%
cos φ Sollwert (gemäß VDE-AR-N 4105 5.7.5)	1,000	1,000	1,000	1,000	0,980	0,960	0,940	0,920
cos φ Messwert (30s Mittelwert)	1,003	1,001	1,000	1,000	0,981	0,960	0,940	0,919
Bewertung (max Messwertabweichung ± 0,01)	4	4	4	4	4	4	4	4
Test zur Einschwingzeit bei Leist	tungssprünge 20%-	->50% und	50%->90%	6 (bei entsp.	rechendem	cos φ)		
Wirkleistungänderung P1 => P2 [% PEmax]		20% =	> 50%			50%	=> 90%	
Ermittelte Einschwingzeit [s]		0,0	000			0,	.000	
Bewertung (max 10s)		×	1		4			

Schalthandlungen (schnelle Spannungsänderungen)	
Einschalten bei beliebiger Leistung	G 0,11
Ungünstigster Fall bei Umschalten der Generatorstufen	nicht zutreffend für diesen Wechselrichtertyp
Einschalten bei Nennleistung	si 1,01
Ausschalten bei Nennwirkleistung	si 1,01
Schlechtester Wert aller Schaltvorgänge kima	x 1,01

Flicker (für Netzimpedanzwinkel Ψk = 32°)											
Flickerwerte	Grenzwert (DIN EN 61000-3-11)	Messwert	Mess-/Grenzwert [%]								
Langzeit-flickerstärke PIt	0,65	0,19	29,23%	1							
Flickerbeiwert CYPK	_	4,55	_	-							

Die Messung erfolgte gemäß P₃ der Norm DIN EN 61000-3-3. Die Grenzwerte der DIN EN 61000-3-3 werden eingehalten. Die Rückwirkungen gelten damit für Erzeugungsanlagen mit Bemessungsströmen ≤ 75A als ausreichend begrenzt (Kapitel 5.4.3).

Oberscl	hwingung	en													
Ord-	-	Grenzwerte					Wirkleist	ungsbin	P/Pn [%]	:				Bewertung	g
nungs-	Frequenz [Hz]	DIN EN 61000-3-12	0	10	20	30	40	50	60	70	80	90	100	max Messwe	ert /
zahl	[112]	l /ln [%]					Messw	erte lv /	/In [%]					Grenzwert	[%]
1	50	_	4,04	10,03	20,14	30,08	40,02	50,54	60,15	70,05	79,79	90,30	99,0		T-
2	100	8,000	0,05	0,05	0,05	0,04	0,08	0,03	0,04	0,04	0,06	0,08	0,10	1,23%	1
3	150	21,600	0,17	0,47	0,71	0,81	0,88	0,93	1,09	1,17	1,22	1,32	1,41	6,55%	4
4	200	4,000	0,01	0,01	0,02	0,01	0,01	0,02	0,04	0,04	0,05	0,06	0,06	1,57%	1
5	250	10,700	0,04	0,13	0,15	0,14	0,12	0,11	0,12	0,22	0,27	0,38	0,47	4,35%	1
6	300	2,667	0,01	0,01	0,01	0,00	0,01	0,01	0,02	0,03	0,03	0,04	0,04	1,50%	1
7	350	7,200	0,03	0,03	0,09	0,13	0,15	0,17	0,28	0,32	0,33	0,37	0,39	5,35%	8
8	400	2,000	0,01	0,01	0,00	0,00	0,00	0,01	0,01	0,02	0,02	0,03	0,03	1,33%	1
9	450	3,800	0,00	0,02	0,03	0,04	0,05	0,06	0,04	0,05	0,06	0,08	0,09	2,44%	1
10	500	1,600	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,02	0,02	0,02	1,25%	4
11	550	3,100	0,01	0,01	0,03	0,03	0,04	0,04	0,04	0,04	0,04	0,04	0,03	1,44%	1
12	600	1,333	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,87%	8
13	650	2,000	0,00	0,01	0,01	0,02	0,02	0,03	0,04	0,04	0,04	0,04	0,04	2,08%	8
14	700	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,01		_
15	<i>7</i> 50	-	0,00	0,00	0,01	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	_	T-
16	800	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,01	_	T-
17	850	-	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01		_
18	900	1	0,00	0,00	0,01	0,02	0,02	0,00	0,00	0,00	0,00	0,00	0,00		
19	950	1	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01		
20	1000	-	0,00	0,00	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
21	1050	-	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01		
22	1100	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
23	1150	_	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01		
24	1200	_	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
25	1250	-	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01		
26	1300	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
27	1350	-	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01		
28	1400	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	_	_
29	1450	-	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	_	
30	1500	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
31	1550	_	0,00	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,01	0,01	_	1-
32	1600	_	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
33	1650	-	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01		
34	1700	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
35	1 <i>75</i> 0	-	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,00	0,00		
36	1800	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		_
37	1850	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
38	1900	_	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
39	1950	_	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
40	2000	 0.2.12ivd oinmohalte	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	_	_

Die Norm EN 61000-3-12 wird eingehalten. Die Rückwirkungen gelten damit für Erzeugungsanlagen mit Bemessungsströmen ≤ 75A als ausreichend begrenzt (Kapitel 5.4.4).

						Wirkle	istungsbin P _/	/Pn [%]:				
Ordnungs-	Frequenz [Hz]	0	10	20	30	40	50	60	70	80	90	100
zahl	[⊓zj				ı	Mes	swerte lv/lr	[%]				<u>. </u>
1,5	75	0,25	0,33	0,22	0,13	0,10	0,13	0,11	0,12	0,12	0,13	0,13
2,5	125	0,06	0,07	0,05	0,03	0,02	0,02	0,02	0,02	0,02	0,02	0,03
3,5	1 <i>7</i> 5	0,01	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
4,5	225	0,02	0,03	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
5,5	275	0,01	0,01	0,01	0,00	0,00	0,01	0,00	0,00	0,01	0,00	0,00
6,5	325	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,01
7,5	375	0,00	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00
8,5	425	0,00	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
9,5	475	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10,5	525	0,00	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
11,5	575	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
12,5	625	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
13,5	675	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
14,5	725	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
15,5	775	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
16,5	825	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
1 <i>7</i> ,5	875	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
18,5	925	0,01	0,02	0,00	0,00	0,00	0,02	0,02	0,00	0,00	0,00	0,00
19,5	975	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,02	0,00	0,00
20,5	1025	0,01	0,02	0,00	0,00	0,02	0,02	0,02	0,00	0,00	0,02	0,00
21,5	1075	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,02	0,00	0,02
22,5	1125	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,00
23,5	1175	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,03
24,5	1225	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
25,5	1275	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
26,5	1325	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
27,5	1375	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
28,5	1425	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
29,5	1475	0,00	0,00	0,01	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00
30,5	1525	0,00	0,01	0,01	0,01	0,01	0,00	0,00	0,01	0,01	0,00	0,00
31,5	1575	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,00	0,00	0,00	0,00
32,5	1625	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
33,5	1675	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
34,5	1 <i>7</i> 25	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
35,5	1 <i>775</i>	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
36,5	1825	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
37,5	1875	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
38,5	1925	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
39,5	1975	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

	_	·				Wirkle	stungsbin P/	'Pn [%]:				
Ordnungs-	Frequenz [Hz]	0	10	20	30	40	50	60	70	80	90	100
zahl	[112]					Mes	swerte lv/ln	[%]				
42	2100	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
46	2300	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
50	2500	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
54	2700	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
58	2900	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
62	3100	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
66	3300	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
70	3500	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
74	3700	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
78	3900	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
82	4100	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
86	4300	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
90	4500	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
94	4700	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
98	4900	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00
102	5100	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
106	5300	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
110	5500	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
114	5700	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
118	5900	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
122	6100	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
126	6300	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
130	6500	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
134	6700	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
138	6900	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
142	<i>7</i> 100	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
146	7300	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
150	<i>7</i> 500	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
154	<i>77</i> 00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
158	<i>7</i> 900	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
162	8100	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
166	8300	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
170	8500	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
174	8700	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
178	8900	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Prüfbericht für Erzeugungseinheiten gemäß F.4 VDE-AR-N 4105 und VDE V 0124-100 für S I6.0H (SI 6.0H-11) mit integriertem NA-Schutz

Auszug aus dem Prüfbericht zum Einheiten-Zertifikat	Nr. 2014 -
"Bestimmung der elektrischen Eigenschaften"	Messzeitraum: 16.01.2014 - 23.01.2014

Typ NA-Schutz:	SMA Grid Guard	Version:	Ab 3.0	0 Weitere Herstellerangaben				
Hersteller:	SMA Solar Technolog	y AG		Interner NA-Schutz mit integriertem Kuppelschalter:				
	Sonnenallee 1		Typ Schalteinrichtung 1:	Leistungsrelais				
	34266 Niestetal			Typ Schalteinrichtung 2:	WR-Brücke			

Funktionale Sicherheit (Einfehlersicherheit)

Die Anforderungen der VDE-AR-N 4105 zur "Funktionalen Sicherheit" sind identisch mit den entsprechenden Anforderungen der DIN V VDE V 0126-1-1. Der Nachweis der Einhaltung dieser Anforderung ist daher durch die Unbedenklichkeitsbescheinigung zur DIN V VDE V 0126-1-1 (ausgestellt von der BG ETEM - abrufbar unter www.sma.de) erbracht.

Spannungs- und Frequenzschu	Spannungs- und Frequenzschutzeinrichtung										
		Überpri	ifung Abschaltg	jrenzwert		Über	erprüfung Abschaltzeit				
	Einstellwert	zulässige	ge Auslösewert - (Messwert *) Be-			Einstellwert	Abschalltzeit	Be-			
Schutzfunktion	normativ	Tolerranz	L-L	L-N	wertung	normativ	(Messwert*)	wertung			
Spannungsrückgangsschutz U<	0,8 Un	± 1% Un	_	0,794 Un	4	0,2 s	0,099 s	4			
Spannungssteigerungsschutz U>>	1,15 Un	± 1% Un		1,149 Un	4	0,2 s	0,094 s	4			
Frequenzsrückgangsschutz f<	47,5 Hz	± 0,1% fn	47,498 Hz		4	0,2 s	0,15 s	4			
Frequenzsteigerungsschutz f>	51,5 Hz	± 0,1% fn	51,	499 Hz	4	0,2 s	0,148 s	4			

Die Messwerte zur Abschaltzeit beinhalten die Auslösezeit des NA-Schutzes sowie die Eigenzeit des Kuppelschalters.

Eigenzeit des Kuppelschalters 60,0 ms

^{*} Die angegebenen Messwerte entsprechen dem jeweiligen maximalen Wert der Messreihe für die Auslösezeit und den Auslösewert (U> & f>) bzw. dem minimalen Wert der Messreihe des Auslösewertes (U< & f<)

Spannungssteigerungsschutz U> (gleitender 10min Mi	Spannungssteigerungsschutz U> (gleitender 10min Mittelwert mit Grenzwert 1,1 Un)									
Testsequenz	Bewertungskriterium	Abschaltzeit	Bewertung							
100% Un für 600s - danach Änderung auf 112% Un	Nach Spannungsänderung - Abschaltung in 600s	498,7 s	\checkmark							
100% Un für 600s - danach Änderung auf 108% Un	Nach Spannungsänderung - keine Abschaltung	keine Absch.	\checkmark							
106% Un für 600s - danach Änderung auf 113% Un	Nach Spannungsänderung - Absch. in 257429s	345,4 s	4							

Aktive Inselnetzerkennung Test gemäß VDE-AR-N 4105 D.1 (Inselnetzerkennung mit Hilfe des Schwingkreistestes)									
Ermittelte Abschaltzeit (maximaler Wert der Messreihen, incl.	1,68 s	Bewertung (Abschaltzeit < 5s)	. //						
Eigenzeit des Kuppelschalters)			*						

Zuschaltbedingungen und Synchronisierung				
Testsequenz	Bewertungskriterium	Wiederzuschaltzeit	Bewertung	
Frequenz dauerhaft kleiner 47,45 Hz	keine Wiederzuschaltung erlaubt	keine Wiederzuschaltung	4	
Frequenzänderung auf Wert im Bereich 47,45 50,0 Hz	Wiederzuschaltung nach 60 s erlaubt	77,7 s	4	
nach Abschaltung Frequenz dauerhaft größer 50,10 Hz	keine Wiederzuschaltung erlaubt	keine Wiederzuschaltung	4	
Frequenzänderung auf Wert im Bereich 50,0 50,10Hz	Wiederzuschaltung nach 60 s erlaubt	77,1 s	4	
Spannung dauerhaft kleiner 84% Un	keine Wiederzuschaltung erlaubt	keine Wiederzuschaltung	4	
Spannungsänderung auf Wert im Bereich 84 100% Un	Wiederzuschaltung nach 60 s erlaubt	73,2 s	4	
Spannung dauerhaft größer 111% Un	keine Wiederzuschaltung erlaubt	keine Wiederzuschaltung	4	
Spannungsänderung auf Wert im Bereich 100 111% Un	Wiederzuschaltung nach 60 s erlaubt	71,6 s	4	
Spannungseinbruch (≤77% Un) für 2 s - Kurzunterbrechung	Wiederzuschaltung nach 5 s erlaubt	74,3 s	4	
Spannungseinbruch (≤77% Un) für 4 s - Kurzunterbrechung	Wiederzuschaltung nach 60 s erlaubt	73,2 s	4	

Prüfbericht für Erzeugungseinheiten gemäß F.3 VDE-AR-N 4105 und VDE V 0124-100 für SI 8.0H (S I8.0H-11)

Auszug aus dem Prüfbericht zum Einheiten-Zertifikat

"Bestimmung der elektrischen Eigenschaften"

Nr. 2014 - 003

Messzeitraum: 17.12.2013 - 22.01.2014

Anlagentyp (EZE):	S 18.0H-11	Herstellerangaben (EZE)					
Anlagenhersteller (EZE):	SMA Solar Technology AG	Anlagenart: Batteriewechselrichter					
	Sonnenallee 1	Wirkleistung: Nennleistung (Pn) bei Nennbedingungen (cos φ =1):	6 kW				
	34266 Niestetal	Bemessungsspannung (Un):	230 V				
		Bemessungstrom (In):	26,1 A				

Wirk-/Blindleistung	Wirk-/Blindleistungsbereich (Ermittlung des Blindleistungbereiches und PEmax600 (PEmax) & SEmax600 (SEmax))											
Leistungsfaktor	Messwerte bei 1009	6 Un:	Messwerte bei 109%	6 Un:								
cos φ	Wirkleistung	Scheinleistung	Wirkleistung	Scheinleistung	ermittelte maximale V	Verte:						
1	5,964 kW	5,965 kVA	5,962 kW	5,963 kVA	P Emax600 (P Emax):	5,964 kW						
0,9 υ	5,280 kW	5,873 kVA	5,293 kW	5,879 kVA	S Emax600 (S Emax):	6,038 kVA						
0,9 ü	5,447 kW	6,038 kVA	5,430 kW	6,026 kVA								

Wirkleistungsreduktion durch Sollwertvorgabe (Einstellgenauigkeit und Einstellzeit)

Einspeisemanagement wird laut FNN für Batterie-Wechselrichter nicht gefordert.

Wirkleistungseins	Virkleistungseinspeisung bei Überfrequenz (Einstellgenauigkeit und Gradient für Leistungssteigerung)											
	Test mit mit	tlerer Leistu	ng (40 - 60	% Pn)	Рм [kW]: 3,003 Test mit hoher Leistur			her Leistung	j (>80% Pn)		Рм [kW]: 4,818	
	Leistungssollwert Messwert		swert	Abw. v.	Sollwert	Leistungs	Leistungssollwert Messwert Ab		Abw. v.	Abw. v. Sollwert		
Frequenz	[% Рм]	[kW]	[% Рм]	[kW]	[% PEmax]	<10%	[% Рм]	[kW]	[% Рм]	[kW]	[% PEmax]	<10%
50,21 Hz	100%	2,99	96,8%	2,91	1,4%	4	100%	4,80	97,2%	4,68	1,9%	4
50,70 Hz	80%	2,40	77,5%	2,33	1,2%	4	80%	3,85	77,8%	3,75	1,8%	4
51,15 Hz	62%	1,86	60,1%	1,81	0,9%	4	62%	2,99	60,4%	2,91	1,3%	4
Wirkleistungsgradie	nt (nach Untei	rschreitung	von 50,2Hz	<u>z</u>):	9,97%	[% PEmax/I	min]		Bewertur	ng (≤ 10%	PEmax/min):	4

Symmetrieverhalt	en von Drel	nstromumrichterein	neiten					
Betriebspunkt der M	lessung:	Grenzwert aus	maximale Unsymetri	e der Scheinleitung (Me	esswert)	Bewertung		
P/Pn [%]	cos φ	VDE-AR-N 4105	IL1 - L2I	IL2 - L3I	IL3 - L1I	max Wert/Gren	zwert [%]	
50%	1	4,6 kVA	0,00 kVA	0,01 kVA	0,01 kVA	0,2%	4	
50%	0,9υ	4,6 kVA	0,01 kVA	0,01 kVA	0,02 kVA	0,4%	4	
50%	0,9ü	4,6 kVA	0,01 kVA	0,01 kVA	0,01 kVA	0,2%	4	
100%	1	4,6 kVA	0,00 kVA	0,01 kVA	0,01 kVA	0,2%	4	
100%	0,9υ	4,6 kVA	0,01 kVA	0,01 kVA	0,02 kVA	0,4%	4	
100%	0,9ü	4,6 kVA	0,02 kVA	0,01 kVA	0,02 kVA	0,4%	4	

Test zum Ausfall bzw. zum Leistungsabfall eines Wechselrichters vom Typ S16.0/8.0H sind nicht relevant, da:

¹⁾ bei Ausfall eines Wechselrichters, oder der Kommunikation zu einem der Wechselrichter, sich alle Wechselrichter vom Netz trennen

²⁾ alle Wechselrichter eines 3phasigen Systems an 1 DC-Quelle (Batterie) angeschlossen sind

Blindleistungsabg Blindleistungs-	<u>, </u>	t (Sollwerte)	<u> </u>		(30s Mitte	lwerte)			Δ cosΦ	عتالت	ssiger	Be-
O		Leistung	U/Un	U [V]	P [W]	Q [VAR]	S [VA]		ISoll-IstI		für cos φ	
vorgabe	cos φ	Leisiung	0,91	209,6	3002,1	-2,6	3006.6	cos φ 1.000	0,000	bereich	ιοι cos φ	wertung
keine Vorgabe		4060%	1,0	230,3	3004,1	12,8	3002,6	1,000	0,000			4
(cosφ im Bereich 0,95υ-0,95ü		PEmax	1,09	251,0	3022,6	30,4	3023,7	1,000	0,000			4
gemäß EN50438)	1,0		0,91	209,7	5442,5	-3,8	5441,4	1,000	0,000	0,95υ	0,95ü	4
in der Regel für		100%	1,0	230,5	5965,6	18,5	5965,1	1,000	0,000			4
EZA ≤ 3,68 kVA		SEmax	1,09	251,1	5965,8	5,5	5966,8	1,000	0,000			4
			0,91	209,6	3004,0	982,5	3160,9	0,950	0,000			4
		4060%	1,0	230,3	3004,4	968,4	3155,6	0,952	0,002			4
		PEmax	1,09	251,0	3025,5	1015,6	3191,4	0,948	0,002			4
Kennlinienvorgabe	0,95ü		0,91	209,7	5518,9	1767,8	5793,6	0,952	0,002	0,94ü	0,96ü	4
des VNB		100%	1,0	230,4	5726,3	1884,8	6028,5	0,950	0,000			4
(cosφ Bereich		SEmax	1,09	251,1	5714,9	1862,5	6012,6	0,951	0,001			4
0,95u-0,95ü) in der Regel für		4060%	0,91	209,6	3000,84	-978,27	3158,43	0,951	0,001			4
EZA > 3,68 kVA		4060% PEmax	1,0	230,3	3003,05	-987,32	3160,09	0,950	0,000			4
& ≤ 13,8 kVA	0,95u	remax	1,09	251,0	3024,71	-957,24	3173,78	0,953	0,003	0.04	0.04	4
	0,930	100%	0,91	209,6	5370,51	-1790,2	5659,32	0,949	0,001	O,94u 0,96u	0,900	4
		SEmax	1,0	230,4	5599,13	-1819,5	5885,96	0,951	0,001			4
		OLIIIUX	1,09	251,0	5610,76	-1840,8	5906,95	0,950	0,000			4
		4060%	0,91	209,6	3003,29	1428,32	3329	0,903	0,003			4
		4000% PEmax	1,0	230,3	3003,74	1428,96	3325,59	0,903	0,003			4
	0.90ü	FEmax	1,09	251,0	3025,95	1471,06	3362,81	0,899	0,001	0.89ü	0,91ü	4
Kennlinienvorgabe	0,700	100%	0,91	209,7	5467,01	2589,18	6047,44	0,904	0,004	0,070	0,710	\checkmark
des VNB		SEmax	1,0	230,4	5446,08	2610,07	6039,38	0,902	0,002			4
(cosφ Bereich		<u> </u>	1,09	251,0	5431,33	2583,17	6016,06	0,903	0,003			\checkmark
0,90u-0,90ü)		4060%	0,91	209,6	3002,06	-1460,6	3341,83	0,899	0,001			\checkmark
in der Regel für		PEmax	1,0	230,3	3002,57	-1453,5	3333,53	0,900	0,000			4
EZA > 13,8 kVA	0,90u		1,09	251,0	3022,82	-1436,5	3345,85	0,903	0,003	0,89u	0.91u	4
	3,.55	100%	0,91	209,6	5263,33	-2580	5860,03	0,898	0,002	5,5.5	5,70	4
		SEmax	1,0	230,3	5280,89	-2561,6	5869,46	0,900	0,000),89u 0,91u	✓
			1,09	251,0	5294,21	-2580,4	5891,69	0,899	0,001			\checkmark

Test zur Einstellgenauigkeit (Schrittweite 10	0% P Emax im Bereich	20% P Emax	maxima	ıle Wirkleist	ung - bei er	ntsprechend	em cos φ)				
Wirkleistung P/PEmax [%] (Sollwert)	20%	30%	40%	50%	60%	70%	70% 80% 90%				
Wirkleistung P/PEmax [%] (Messwert)	19,98%	30,26%	40,33%	50,09%	60,23%	70,46%	80,32%	90,01%			
cos φ Sollwert (gemäß VDE-AR-N 4105 5.7.5)	1,000	1,000	1,000	1,000	0,980	0,959	0,939	0,920			
cos φ Messwert (30s Mittelwert)	1,000	1,000	1,000	1,000	0,980	0,959	0,939	0,920			
Bewertung (max Messwertabweichung ± 0,01)	4	4	4	4	4	4	4	4			
Test zur Einschwingzeit bei Le	istungssprünge 20%	->50% und	50%->90%	% (bei entsp	rechendem	cos φ)					
Wirkleistungänderung P1 => P2 [% PEmax]		20% =	⇒ 50%			50%	=> 90%				
Ermittelte Einschwingzeit [s]		0,000 5,400									
Bewertung (max 10s)		4									

Aufgrund der blindleistungspriorisierenden Fahrweise reduziert sich die max. mögliche Wirkleistung bei enstprechender cos φ Vorgabe.	
Messpunkte bei 100% PEmax mit Vorgabe cos φ≠1 sind daher nicht realisierbar.	

Schalthandlungen (schnelle Spannungsänderungen)	
Einschalten bei beliebiger Leistung k	0,12
Ungünstigster Fall bei Umschalten der Generatorstufen k	nicht zutreffend für diesen Wechselrichtertyp
Einschalten bei Nennleistung k	1,02
Ausschalten bei Nennwirkleistung k	1
Schlechtester Wert aller Schaltvorgänge kimax	1,02

Flicker (für Netzimpedanzwinkel Ψk = 32°)											
Flickerwerte	Grenzwert (DIN EN 61000-3-11)	Messwert	Mess-/Grenzwert [%]								
Langzeit-flickerstärke PIt	0,65	0,19	29,23%								
Flickerbeiwert cwk	_	3,49									

Die Messung erfolgte gemäß Ps der Norm DIN EN 61000-3-3. Die Grenzwerte der DIN EN 61000-3-3 werden eingehalten. Die Rückwirkungen gelten damit für Erzeugungsanlagen mit Bemessungsströmen ≤ 75A als ausreichend begrenzt (Kapitel 5.4.3).

Oberscl	hwingung	en													
Ord-	-	Grenzwerte					Wirkleist	ungsbin	P/Pn [%]	:				Bewertung	g
nungs-	Frequenz [Hz]	DIN EN 61000-3-12	0	10	20	30	40	50	60	70	80	90	100	max Messwe	ert /
zahl	[1 12]	l/ln [%]					Messv	erte lv /	/In [%]					Grenzwert	[%]
1	50	-	3,88	10,08	19,86	30,39	40,17	51,92	62,11	71,92	81,35	91,54	99,1		T_
2	100	8,000	0,10	0,08	0,05	0,04	0,01	0,03	0,04	0,05	0,05	0,06	0,09	1,15%	1
3	150	21,600	0,23	0,16	0,60	0,67	0,64	0,58	0,75	0,60	0,79	1,56	1,74	8,07%	1
4	200	4,000	0,02	0,01	0,01	0,01	0,02	0,03	0,03	0,04	0,05	0,06	0,07	1,67%	1
5	250	10,700	0,04	0,19	0,12	0,08	0,05	0,05	0,10	0,06	0,20	0,49	0,64	5,97%	8
6	300	2,667	0,00	0,00	0,01	0,01	0,01	0,02	0,02	0,02	0,03	0,04	0,05	1,81%	1
7	350	7,200	0,02	0,09	0,11	0,16	0,17	0,16	0,21	0,17	0,23	0,36	0,40	5,62%	1
8	400	2,000	0,00	0,00	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0,03	0,03	1,41%	1
9	450	3,800	0,00	0,03	0,02	0,02	0,04	0,06	0,06	0,07	0,08	0,15	0,18	4,71%	\checkmark
10	500	1,600	0,00	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,02	0,02	1,51%	\checkmark
11	550	3,100	0,00	0,01	0,03	0,04	0,04	0,02	0,03	0,02	0,02	0,02	0,01	1,25%	\checkmark
12	600	1,333	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	1,11%	\checkmark
13	650	2,000	0,01	0,01	0,01	0,02	0,02	0,03	0,03	0,03	0,03	0,03	0,04	1,87%	\checkmark
14	700	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	_	_
15	750	-	0,00	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,02	_	
16	800	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01		
1 <i>7</i>	850	-	0,00	0,00	0,01	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,02	_	_
18	900	_	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,00	0,00	0,01	_	_
19	950	_	0,00	0,00	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,00	0,01	_	
20	1000	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,00	0,00	0,00	_	
21	1050	-	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	_	_
22	1100	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	_	
23	1150	-	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,01		_
24	1200	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
25	1250	-	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,00		_
26	1300	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		<u> </u>
27	1350	-	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,00		_
28	1400	_	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		1-
29	1450	_	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01		1-
30	1500	_	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		1-
31	1550	_	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	_	1-
32	1600	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	_	1-
33	1650	-	0,00	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	_	1-
34	1700	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	_	1-
35	1750	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	_	1-
36	1800	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	_	1-
37	1850	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	_	1-
38	1900	_	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		1-
39	1950	_	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-	1-
40	2000	— 0.2.12ind ainmahalte	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		

Die Norm EN 61000-3-12 wird eingehalten. Die Rückwirkungen gelten damit für Erzeugungsanlagen mit Bemessungsströmen ≤ 75A als ausreichend begrenzt (Kapitel 5.4.4).

						Wirkle	istungsbin P/	'Pn [%]:				
Ordnungs-	Frequenz	0	10	20	30	40	50	60	70	80	90	100
zahl	[Hz]				ı	Mes	swerte lv/ln	[%]	ı			
1,5	75	0,21	0,19	0,13	0,08	0,09	0,09	0,09	0,10	0,10	0,10	0,11
2,5	125	0,03	0,04	0,03	0,02	0,01	0,01	0,02	0,01	0,02	0,03	0,03
3,5	1 <i>7</i> 5	0,02	0,02	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,01
4,5	225	0,02	0,02	0,01	0,00	0,00	0,01	0,01	0,00	0,00	0,01	0,01
5,5	275	0,01	0,01	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,01	0,01
6,5	325	0,01	0,01	0,01	0,01	0,00	0,00	0,01	0,00	0,00	0,01	0,01
7,5	375	0,01	0,01	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,01	0,01
8,5	425	0,01	0,01	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,01	0,00
9,5	475	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10,5	525	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
11,5	575	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
12,5	625	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
13,5	675	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
14,5	725	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
15,5	775	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
16,5	825	0,01	0,01	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00
1 <i>7</i> ,5	875	0,00	0,00	0,00	0,00	0,00	0,01	0,02	0,00	0,00	0,00	0,00
18,5	925	0,01	0,01	0,01	0,01	0,00	0,00	0,00	0,00	0,02	0,02	0,02
19,5	975	0,00	0,00	0,00	0,00	0,00	0,01	0,02	0,00	0,00	0,00	0,00
20,5	1025	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,02	0,02
21,5	1075	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
22,5	1125	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
23,5	1175	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
24,5	1225	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
25,5	1275	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
26,5	1325	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
27,5	1375	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
28,5	1425	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
29,5	1475	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
30,5	1525	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
31,5	1575	0,00	0,00	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00
32,5	1625	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
33,5	1675	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
34,5	1 <i>7</i> 25	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
35,5	1 <i>775</i>	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
36,5	1825	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
37,5	1875	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
38,5	1925	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
39,5	1975	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Höhere Fr	equenzen											
	Frequenz			_	_	Wirkle	istungsbin P _/	/Pn [%]:	_	_	_	_
Ordnungs-	[Hz]	0	10	20	30	40	50	60	70	80	90	100
zahl	[2]					Mes	swerte lv/lr	n [%]				
42	2100	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
46	2300	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
50	2500	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
54	2700	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
58	2900	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
62	3100	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
66	3300	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
70	3500	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
74	3700	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
78	3900	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
82	4100	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
86	4300	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
90	4500	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
94	4700	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
98	4900	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
102	5100	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
106	5300	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
110	5500	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
114	5700	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
118	5900	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
122	6100	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
126	6300	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
130	6500	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
134	6700	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
138	6900	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
142	7100	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
146	7300	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
150	7500	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
154	<i>77</i> 00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
158	7900	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
162	8100	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
166	8300	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
170	8500	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
174	8700	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
178	8900	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Prüfbericht für Erzeugungseinheiten gemäß F.4 VDE-AR-N 4105 und VDE V 0124-100 für SI 8.0H (S I8.0H-11) mit integriertem NA-Schutz

Auszug aus dem Prüfbericht zum Einheiten-Zertifikat	Nr. 2014 - 003
"Bestimmung der elektrischen Eigenschaften"	Messzeitraum: 17.12.2013 - 22.01.2014

Typ NA-Schutz:	SMA Grid Guard	Version:	Ab 2.0	Weitere Herstellerangaben	
Hersteller:	SMA Solar Technolo	gy AG		Interner NA-Schutz mit integriertem Kup	ppelschalter:
	Sonnenallee 1			Typ Schalteinrichtung 1:	Leistungsrelais
	34266 Niestetal			Typ Schalteinrichtung 2:	WR-Brücke

Funktionale Sicherheit (Einfehlersicherheit)

Die Anforderungen der VDE-AR-N 4105 zur "Funktionalen Sicherheit" sind identisch mit den entsprechenden Anforderungen der DIN V VDE V 0126-1-1. Der Nachweis der Einhaltung dieser Anforderung ist daher durch die Unbedenklichkeitsbescheinigung zur DIN V VDE V 0126-1-1 (ausgestellt von der BG ETEM - abrufbar unter www.sma.de) erbracht.

Spannungs- und Frequenzschutzeinrichtung											
	Überprü	ıfung Abschaltç		Überprüfung Abschaltzeit							
Einstellwert	Einstellwert zulässige Auslösewert - (Messwert *) Be-				Einstellwert	Abschalltzeit	Be-				
normativ	Tolerranz	L-L	L-N	wertung	normativ	(Messwert*)	wertung				
0,8 Un	± 1% Un	_	0,794 Un	4	0,2 s	0,101 s	4				
1,15 Un	± 1% Un	_	1,149 Un	4	0,2 s	0,099 s	4				
47,5 Hz	± 0,1% fn	47,498 Hz		4	0,2 s	0,15 s	4				
51,5 Hz	± 0,1% fn	51,4	496 Hz	4	0,2 s	0,148 s	4				
	Einstellwert normativ 0,8 Un 1,15 Un 47,5 Hz	Überprü Einstellwert zulässige normativ Tolerranz 0,8 Un ± 1% Un 1,15 Un ± 1% Un 47,5 Hz ± 0,1% fn	Überprüfung Abschaltg Einstellwert normativ zulässige Tolerranz Auslösewert L - L 0,8 Un ± 1% Un − 1,15 Un ± 1% Un − 47,5 Hz ± 0,1% fn 47,4	Überprüfung Abschaltgrenzwert Einstellwert zulässige Auslösewert - (Messwert *) normativ Tolerranz L - L L - N 0,8 Un ± 1% Un − 0,794 Un 1,15 Un ± 1% Un − 1,149 Un 47,5 Hz ± 0,1% fn 47,498 Hz	Überprüfung Abschaltgrenzwert Einstellwert zulässige Auslösewert - (Messwert *) Benwertung normativ Tolerranz L - L L - N wertung 0,8 Un ± 1% Un - 0,794 Un ✓ 1,15 Un ± 1% Un - 1,149 Un ✓ 47,5 Hz ± 0,1% fn 47,498 Hz ✓	Überprüfung Abschaltgrenzwert Über Einstellwert Über Einstellwert Einstellwert normativ Tolerranz L - L L - N wertung normativ 0,8 Un ± 1% Un — 0,794 Un ✓ 0,2 s 1,15 Un ± 1% Un — 1,149 Un ✓ 0,2 s 47,5 Hz ± 0,1% fn 47,498 Hz ✓ 0,2 s	Überprüfung Abschaltgrenzwert Überprüfung Abschalt Einstellwert zulässige Auslösewert - (Messwert *) Be- Einstellwert Abschaltzeit normativ Tolerranz L - L L - N wertung normativ (Messwert *) 0,8 Un ± 1% Un − 0,794 Un ✓ 0,2 s 0,101 s 1,15 Un ± 1% Un − 1,149 Un ✓ 0,2 s 0,099 s 47,5 Hz ± 0,1% fn 47,498 Hz ✓ 0,2 s 0,15 s				

Die Messwerte zur Abschaltzeit beinhalten die Auslösezeit des NA-Schutzes sowie die Eigenzeit des Kuppelschalters. Eigenzeit des Kuppelschalters 60,0 ms

^{*} Die angegebenen Messwerte entsprechen dem jeweiligen maximalen Wert der Messreihe für die Auslösezeit und den Auslösewert (U> & f>) bzw. dem minimalen Wert der Messreihe des Auslösewertes (U< & f<)

Spannungssteigerungsschutz U> (gleitender 10min Mi	Spannungssteigerungsschutz U> (gleitender 10min Mittelwert mit Grenzwert 1,1 Un)											
Testsequenz	Bewertungskriterium	Abschaltzeit	Bewertung									
100% Un für 600s - danach Änderung auf 112% Un	Nach Spannungsänderung - Abschaltung in 600s	497,6 s	~									
100% Un für 600s - danach Änderung auf 108% Un	Nach Spannungsänderung - keine Abschaltung	keine Absch.	4									
106% Un für 600s - danach Änderung auf 113% Un	Nach Spannungsänderung - Absch. in 257429s	344,9 s	4									

Aktive Inselnetzerkennung Test gemäß VDE-AR-N 410	5 D.1 (Inseli	netzerkennung mit Hilfe des Schwingkreistestes)	
Ermittelte Abschaltzeit (maximaler Wert der Messreihen, incl.	1,64 s	Bewertung (Abschaltzeit < 5s)	. /
Eigenzeit des Kuppelschalters)			~

Zuschaltbedingungen und Synchronisierung			
Testsequenz	Bewertungskriterium	Wiederzuschaltzeit	Bewertung
Frequenz dauerhaft kleiner 47,45 Hz	keine Wiederzuschaltung erlaubt	keine Wiederzuschaltung	\checkmark
Frequenzänderung auf Wert im Bereich 47,45 50,0 Hz	Wiederzuschaltung nach 60 s erlaubt	78,2 s	\checkmark
nach Abschaltung Frequenz dauerhaft größer 50,10 Hz	keine Wiederzuschaltung erlaubt	keine Wiederzuschaltung	\checkmark
Frequenzänderung auf Wert im Bereich 50,0 50,10Hz	Wiederzuschaltung nach 60 s erlaubt	75,7 s	\checkmark
Spannung dauerhaft kleiner 84% Un	keine Wiederzuschaltung erlaubt	keine Wiederzuschaltung	\checkmark
Spannungsänderung auf Wert im Bereich 84 100% Un	Wiederzuschaltung nach 60 s erlaubt	73,6 s	\checkmark
Spannung dauerhaft größer 111% Un	keine Wiederzuschaltung erlaubt	keine Wiederzuschaltung	\checkmark
Spannungsänderung auf Wert im Bereich 100 111% Un	Wiederzuschaltung nach 60 s erlaubt	74,3 s	\checkmark
Spannungseinbruch (≤77% Un) für 2 s - Kurzunterbrechung	Wiederzuschaltung nach 5 s erlaubt	73,59 s	\checkmark
Spannungseinbruch (≤77% Un) für 4 s - Kurzunterbrechung	Wiederzuschaltung nach 60 s erlaubt	73,6 s	4

SMA Solar Technology AG | Sonnenallee 1 | 34266 Niestetal | Germany

Phone: +49 561 9522-0 | Fax: +49 561 9522-100 | Internet: www.SMA.de | E-Mail: info@SMA.de

Amtsgericht (District court) Kassel HRB (registration number) 3972

Vorsitzender des Aufsichtsrats (Chairman of the Supervisory Board): Günther Cramer

Managing Board: Roland Grebe, Lydia Sommer, Pierre-Pascal Urbon, Marko Werner

Herstellererklärung

Konformitätsnachweis entsprechend FNN Dokument "Anschluss und Betrieb von Speichern am Niederspannungsnetz"

Hiermit bestätigt die SMA Solar Technology AG, dass die unten aufgeführten Solarwechselrichter die nachfolgenden Anforderungen aus dem FNN Dokument "Anschluss und Betrieb von Speichern am Niederspannungsnetz" erfüllen.

Anforderung 4.10 aus FNN-Dokument

Speicher ohne Leistungsbezug aus dem öffentlichen Netz

Wenn das Speichersystem in das öffentliche Netz einspeisen soll, dann darf kein Bezug aus dem Netz zur Ladung des Speichers erfolgen.

Anforderung 4.11 aus FNN-Dokument

Zur Verhinderung der Einspeisung wird der Energiefluss am Netzanschlusspunkt durch einen Zähler (Sensor des Speichersystems) gemessen. Diese Daten werden an den Wechselrichter übermittelt.

SMA Solar Technology AG bestätigt, dass ein Funktionstest (Typprüfung) des Sensors des Speichersystems stattgefunden hat. Es wird weiterhin die ordnungsgemäße Funktion des Sensors des Speichersystems bestätigt.

SUNNY BOY	Monitoring Systeme
ohne Transformator	SMA Energy Meter
SB 3600SE-10	
SB 5000SE-10	

Niestetal, 14. Februar 2014

SMA Solar Technology AG

ppa. Frank Greizer (Vice President MPTPD) HK_xx00SE-10_Konformität-FNN_de_10

Herstellererklärung

Sunny Island 3.0M-11/4.4M-11/6.0H-11/8.0H-11 Konformitätsnachweis entsprechend FNN Dokument "Anschluss und Betrieb von Speichern am Niederspannungsnetz"

Anforderung aus 4.10 aus dem FNN Dokument "Anschluss und Betrieb von Speichern am Niederspannungsnetz": Der Batterie-Wechselrichter Sunny Island 3.0M-11/4.4M-11/6.0H-11/8.0H-11 entlädt keine in der Batterie gespeicherte Energie in das öffentliche Netz. Die zwischengespeicherte Energie wird nur innerhalb der Kundenanlage verwendet.

Anforderung aus 4.11 aus dem FNN Dokument "Anschluss und Betrieb von Speichern am Niederspannungsnetz": Zur Verhinderung der Einspeisung wird der Energiefluss am Netzanschlusspunkt durch einen Zähler (Sensor des Speichersystems) gemessen. Diese Daten werden über eine Kommunikations-Komponente an den Batteriewechselrichter übermittelt.

SMA Solar Technology AG bestätigt, dass ein Funktionstest (Typprüfung) des Sensors des Speichersystems stattgefunden hat. Es wird weiterhin die ordnungsgemäße Funktion des Sensors des Speichersystems bestätigt.

Konfiguration	Batterie-Wechselrichter	Kommunikations- Komponente zwischen Batterie-Wechselrichter und Zähler	Zähler
Sunny Island mit Sunny Home Manager	Sunny Island 3.0M-11/ Sunny Island 4.4M-11/ Sunny Island 6.0H-11/ Sunny Island 8.0H-11	Sunny Home Manager	SMA Energy Meter (EMETER-10) EMH ED300L W2E8-0NE00-D2- 000000-E50/L1 eHZ-HW8E2AWL0EQ2P Hager EHZ361D5T EHZ361WA EHZx61LA EHZx61ZA EHZx63Zx EHZx63Zx NZR eHZ W8E2A500AK2

Niestetal, 12.03.2015

SMA Solar Technology AG

ppa. Volker Wachenfeld (Executive Vice President TIOS)

Herstellererklärung

VDE Anwendungsregel 2510-2 Stationäre elektrische Energiespeichersysteme zum Anschluss an das Niederspannungsnetz

Hiermit bestätigt die SMA Solar Technology AG, dass das Sunny Island Energiespeichersystem die Anforderungen der VDE-AR 2510-2 erfüllt.

Das Energiespeichersystem zur Eigenverbrauchsoptimierung besteht aus den folgenden Komponenten:

- Sunny Island 3.3M/4.4M/6.0H/8.0H
- SMA Energy Meter
- Batterie (alle Bleibatterien und freiegeben Lithium-Ionen-Batterien (siehe www.SMA.de)

Das Energiespeichersystem zur Eigenverbrauchsoptimierung mit Ersatzstromfunktion besteht aus den folgenden Komponenten:

- Sunny Island 3.3M/4.4M/6.0H/8.0H
- SMA Energy Meter
- Batterie (alle Bleibatterien und freiegeben Lithium-Ionen-Batterien (siehe www.SMA.de)
- Umschalteinrichtung der Firma enwitec electronic GmbH & Co.KG
 (Typ: 1PH_IPC_SMA_BBDAP_20kW_XXX und 3PH_SMA_BBDAP_35kW_XXX)

Das Energiespeichersystem zum Bildung eines Ersatzstromnetzes besteht aus den folgenden Komponenten:

- Sunny Island 3.3M/4.4M/6.0H/8.0H
- Batterie (alle Bleibatterien und freiegeben Lithium-Ionen-Batterien (siehe www.SMA.de)
- Umschalteinrichtung der Firma enwitec electronic GmbH & Co.KG
 (Typ: 1PH_IPC_SMA_BBDAP_20kW_XXX und 3PH_SMA_BBDAP_35kW_XXX)

Niestetal, 02.06.2015

SMA Solar Technology AG

ppa. Volker Wachenfeld

gov. Vole Galled

(EVP Business Unit Offgrid & Storage)

Anzahl der Wiederzuschaltversuche ändern

Zur Einhaltung der im Anhang A.1 geforderten Funktionalitäten für Netzersatzbetrieb ist im Sunny Island 3.3M/4.4M/6.0H/8.0H der Parameter "Anzahl der Autostarts" 250#01 AutoStr auf 0 einzustellen. Siehe hierzu die Betriebsanleitung Sunny Island 3.3M/4.4M/6.0H/8.0H auf www.SMA.de.

Informationen zu VDE-AR 2510-2 Anhang A Funktionalitäten für Netzersatzbetrieb

A.1 Kurzschlussstrombereitstellung

- Maximal möglicher Kurzschlussstrom:
 Sunny Island 3.3M / 4.4M: 60 A (Effektivwert über eine Netzperiode)
 Sunny Island 6.0H / 8:0H: 120 A (Effektivwert über eine Netzperiode)
- Maximaler Kurzschlussstromverlauf:

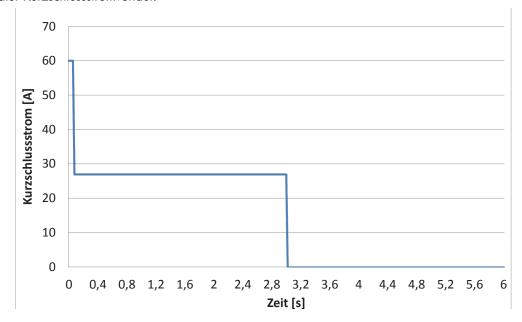


Abbildung 1: Maximaler Kurzschlussstromverlauf Sunny Island 3.3M / 4.4M

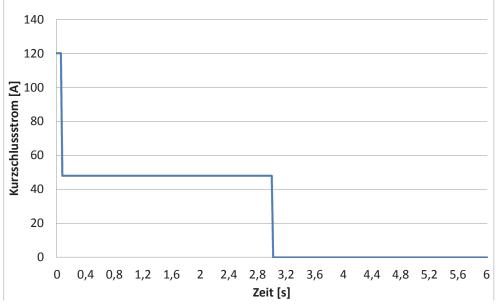


Abbildung 2: Maximaler Kurzschlussstromverlauf Sunny Island 6.0H / 8.0H

A.2 Spannungsbegrenzung

- Spannungsverlaufs gegen Erdpotenzial im Kurzschlussfall

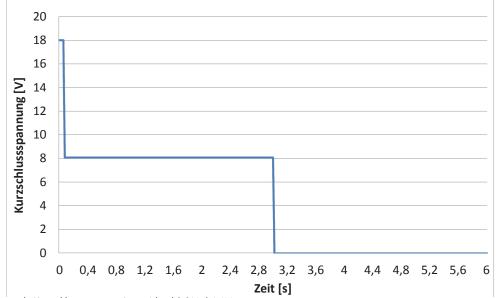


Abbildung 3: Maximale Kurzschlussspannung Sunny Island 3.3M / 4.4M

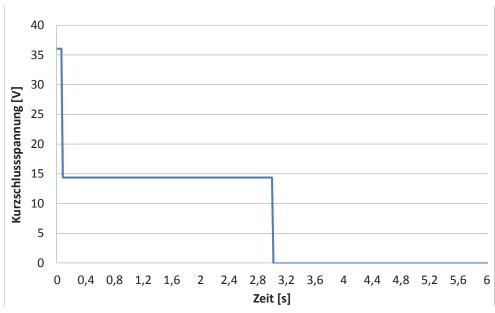
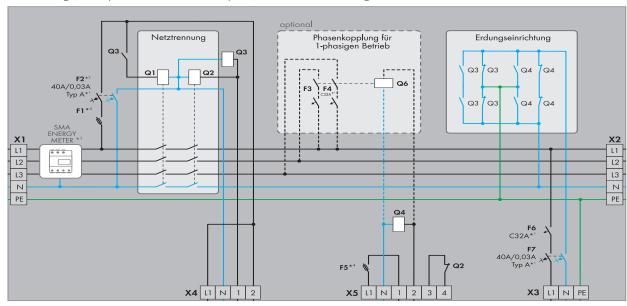



Abbildung 4: Maximale Kurzschlussspannung Sunny Island 6.0H / 8.0H

- Angabe, ob nach Abschaltung im Kurzschlussfall manuell oder automatisch wiederzugeschaltet wird: Mauell
- Bei automatischer Wiederzuschaltung: entfällt

Zur Charakterisierung des inselnetzbildendenden Speichersystems sind folgende Daten anzugeben:

- Darstellung (Prinzipschaltbild, Stromlaufplan) der Inselnetzerdung:

- Die angegebenen Werte sind Empfehlungen der SMA Solar Technology AG. Sie müssen die elektrischen Komponenten entsprechend
 Ausschließlich im Ti-Netz notwendig.
 Bei Systeme ohne Eigenverbrauchsoptimierung nicht notwendig.
 Anforderungen an eingesetzte Schmelzsicherung: 1A, nominaler Kallwiderstand mindestens 0,2 Ω und Schmelzintegral maximal 1A²s nd den vor Ort gültigen Normen und Richtlinien ausleger

Abbildung 5: Stromlaufplan Umschalteirichtung

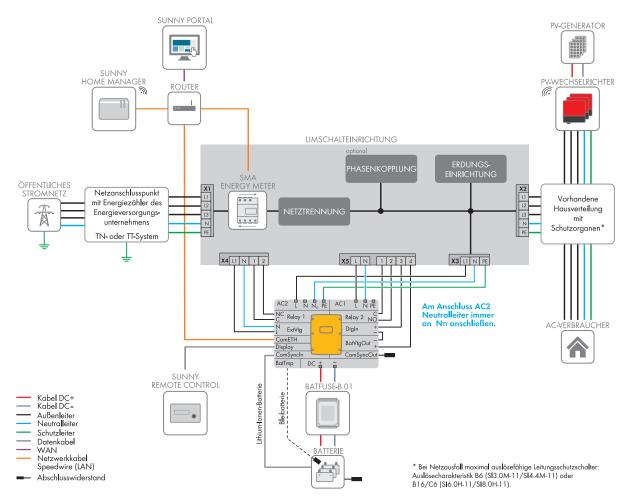


Abbildung 6: Verschaltungsübersicht

- Angabe der Maßnahme zur Einhaltung der Ein-Fehler-Sicherheit (Überwachung, redundante Schaltung, usw.): Redundant
- Kurzeitige Strombelastbarkeit der Inselnetzerdung für 5 s: 240 A
- Dauerhafte Strombelastbarkeit der Inselnetzerdung: 40 A

A.4 Abschaltung im IT-Netz nach dem erstem Fehler

Entfällt

Bureau Veritas Consumer Products Services Germany GmbH

Businesspark A96 86842 Türkheim Germany + 49 (0) 40 740 41 – 0 cps-tuerkheim@de.bureauveritas.com

Certification body of BV CPS GmbH Accredited according to EN 45011 -ISO / IEC Guide 65

Certificate of compliance

Applicant: SMA Solar Technology AG

Sonnenallee 1 34266 Niestetal **Germany**

Product: Battery Inverter

Model: SI8.0H-11

SI6.0H-11

Use in accordance with regulations:

The inverters are tested according the IEC 61683 procedure for measuring efficiency. A maximum efficiency value of $\eta = 95.8\%$ is measured.

Applied rules and standards:

IEC 61683:1999 Photovoltaic systems – Power conditioners – Procedure for measuring

efficiency

At the time of issue of this certificate the safety concept of an aforementioned representative product corresponds to the valid safety specifications for the specified use in accordance with regulations.

Report number: 13TH0287-IEC61683

Certificate number: U14-0005

Date of issue: 2014-01-08 Valid until: 2017-01-07

Certification body

Dieter Zitzmann

Konformitätsnachweis Erzeugungseinheit	SMA				
Hersteller	SMA Solar Technology AG				
Typ Erzeugungseinheit	siehe Tabelle 1				
Bemessungswerte	max. Wirkleistung $P_{\rm\scriptscriptstyle Emax}$	siehe Tabelle 1			
	max. Scheinleistung S _{Emax}	siehe Tabelle 1			
	Bemessungsspannung	siehe Tabelle 1			
Netzanschlussregel	VDE-AR-N 4105:2011-08				
	"Erzeugungsanlagen am Nied	derspannungsnetz"			
	Technische Mindestanforderungen für Anschluss und Parallelbetrieb von Erzeugungsanlagen am				
D T. H. 1. ((,	Niederspannungsnetz	DE 4041 4105			

Die in Tabelle 1 aufgeführten Erzeugungseinheiten erfüllen die Anforderungen der VDE-AR-N 4105.

- Hiermit wird bestätigt, dass die spezifischen Anforderungen der VDE-AR-N 4105 überprüft wurden.
- Die VDE-AR-N 4105 Konformität ist in allen aufgeführten SMA-Wechselrichtern in Tabelle 1, ab entsprechen der Firmware-Version, gewährleistet.

VDE AR-N 4105 Konformitätsnachweis der Erzeugungseinheit für eine einphasige Installation

Wechselrichtertyp	ab Firmware- Version	max. Wirkleistung	max. Scheinleistung S_{Emax}	Bemessungs- spannung U _n	Bemessungs- strom	Blind- leistung	Kurzschluss- strom
SI 6.0H-11	2.00	4,6 kW	4,6 kVA	230 V	20 A	х	120 A
SI 8.0H-11	3.00	4,6 kW	4,6 kVA	230 V	20 A	х	120 A
SI 3.0M-11	3.150	2,3 kW	2,3 kVA	230 V	10 A	х	60 A
SI 4.4M-11	3.150	3,3 kW	3,3 kVA	230 V	14,5 A	х	60 A

VDE AR-N 4105 Konformitätsnachweis der Erzeugungseinheit für eine dreiphasige Installation mit kommunikativer Kopplung

Wechselrichtertyp	ab Firmware- Version	$\begin{array}{c} \text{max.} \\ \text{Wirkleistung} \\ P_{\textit{Emax}} \end{array}$	max. Scheinleistung S _{Emax}	Bemessungs- spannung U _n	Bemessungs- strom	Blind- leistung	Kurzschluss- strom I'' _k
SI 6.0H-11	2.00	4,6 kW	4,6 kVA	230 V	20 A	х	120 A
SI 8.0H-11	3.00	6,0 kW	6,0 kVA	230 V	26,1 A	х	120 A
SI 3.0M-11	3.150	2,3 kW	2,3 kVA	230 V	10 A	х	60 A
SI 4.4M-11	3.150	3,3 kW	3,3 kVA	230 V	14,5 A	х	60 A

Tabelle 1 und 2: SMA Batteriewechselrichter konform mit der VDE-AR-N 4105.

Hinweise zu Vordruck F.2 - Datenblatt Erzeugungsanlage (VDE-AR-N 4105):

- Angaben für die Erzeugungseinheiten zu $P_{E_{max'}}$ $S_{E_{max'}}$ U_n , I_r und I_k sind in obiger Tabelle aufgeführt. Anlaufstrom I_a ist nicht zutreffend für Wechselrichter/Umrichter.
- Bei den oben genannten Erzeugungseinheiten handelt es sich um selbstgeführte Umrichter mit einer Pulsfrequenz von 20 kHz.

Niestetal, 17.07.2014 **SMA Solar Technology AG**

ppa. Volker Wachenfeld (Senior Vice President TIOS)

Konformitätsnachweis des im Wechselrichter integrierten NA-Schutzes	SMA
Hersteller	SMA Solar Technology AG
Typ NA-Schutz	siehe Tabelle 1
Zugeordnet zu Erzeugungseinheit Typ	siehe Tabelle 1
Netzanschlussregel	VDE-AR-N 4105:2011-08
	"Erzeugungsanlagen am Niederspannungsnetz"
	Technische Mindestanforderungen für Anschluss und Parallelbetrieb von Erzeugungsanlagen am
	Niederspannungsnetz

Der in den Geräten laut Tabelle 1 integrierte Netz- und Anlagenschutz erfüllt die Anforderungen der VDE-AR-N 4105.

• Die Einstellwerte und die Abschaltzeiten (Gesamtabschaltzeiten) sind wie folgt:

Spannungsrückgangsschutz U <: 184 V, \leq 200 ms Spannungssteigerungsschutz U > *: 253 V, \leq 200 ms Spannungssteigerungsschutz U >>: 262,5 V, \leq 200 ms Frequenzrückgangsschutz f <: 47,5 Hz, \leq 200 ms Frequenzsteigerungsschutz f >: 51,5 Hz, \leq 200 ms

- Die Inselnetzerkennung ist mittels Schwingkreistest nachgewiesen worden.
- Die VDE-AR-N 4105 Konformität ist für alle SMA-Wechselrichter entsprechend der Bezeichnung und Firmware-Version (siehe Tabelle 1) gewährleistet.

Wechselrichtertyp	Integrierter NA-Schutz	Erfüllung Anforderungen VDE-AR-N 4105 ab Firmware-Version
SI 6.0H-11	х	2.00
SI 8.0H-11	х	3.00
SI 4.4M-11	х	3.150
SI 3.0M-11	x	3.150

Tabelle 1: SMA Batteriewechselrichter konform mit der VDE-AR-N 4105.

Niestetal, 14.07.2014

SMA Solar Technology AG

gra. Jobs Gali Dell

ppa. Volker Wachenfeld (Senior Vice President TIOS)

^{*} gleitender 10-Minuten-Mittelwert-Schutz gem. EN 50160.

ZEICHENGENEHMIGUNG MARKS APPROVAL

SMA Solar Technology AG Sonnenallee 1 34266 Niestetal

ist berechtigt, für ihr Produkt / is authorized to use for their product

PV-Wechselrichter

Power Converter for Photovoltaic Sunny Island Inselnetzwechselrichter Sunny Island Off Grid Inverter

die hier abgebildeten markenrechtlich geschützten Zeichen für die ab Blatt 2 aufgeführten Typen zu benutzen / the legally protected Marks as shown below for the types referred to on page 2 ff.

Geprüft und zertifiziert nach / Tested and certified according to

DIN EN 62109-1 (VDE 0126 Teil 14-1):2011-04; EN 62109-1:2010-07 EN 62109-1:2010-07 IEC 62109-1(ed.1) DIN EN 62109-2 (VDE 0126 Teil 14-2):2012-04; EN 62109-2:2011-09 IEC 62109-2(ed.1)

Das Produkt entspricht den Anforderungen des deutschen Produktsicherheitsgesetzes (ProdSG) hinsichtlich der Gewährleistung von Sicherheit und Gesundheit.

The product covers the requirements of the German Act "Produktsicherheitsgesetz (ProdSG)" regarding the ensurance of safety and health.

Befristet zum / valid until: 2018-08-31

VDE Prüf- und Zertifizierungsinstitut GmbH VDE Testing and Certification Institute Zertifizierungsstelle / Certification

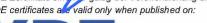
Aktenzeichen: 4383900-3971-0004 / 185844

File ref .:

Ausweis-Nr. 40034343

Blatt 1

Certificate No.


Page

Weitere Bedingungen siehe Rückseite und Folgeblätter / further conditions see overleaf and following pages

Offenbach, 2012-02-07

(letzte Änderung / updated 2014-10-24)

VDE Zertifikate sind nu gültig bei Veröffentlichung VDE certificates avalid only when published on: gültig bei Veröffentlichung unter:

Ausweis-Nr. / Blatt / Certificate No. Page 40034343 2

Datum / Date

2012-02-07

Name und Sitz des Genehmigungs-Inhabers / Name and registered seat of the Certificate holder SMA Solar Technology AG, Sonnenallee 1, 34266 Niestetal

Aktenzeichen / *File ref.* letzte Änderung / *updated* 4383900-3971-0004 / 185844 / ET2 / GTF 2014-10-24

Dieses Blatt gilt nur in Verbindung mit Blatt 1 des Zeichengenehmigungsausweises Nr. 40034343. This supplement is only valid in conjunction with page 1 of the Certificate No. 40034343.

PV-Wechselrichter

Power Converter for Photovoltaic

Sunny Island Inselnetzwechselrichter

Sunny Island Off Grid Inverter

Typ(en) / Type(s)

1) SI 3.0M-11

2) SI 4.4M-11

3) SI 6.0H-11

4) SI 8.0H-11

Technische Daten AC1 - Inselnetz / PV-Wechselrichter : Technical data AC1 - Island Network / PV-Converter :

Bemessungsspannung

Rated voltage

AC 230 V

Bemessungsstrom
Rated current

1) AC 10 A 2) AC 14.5 A 3) AC 20 A 4) AC 26,1 A

Bemessungsleistung

Rated power

1) 2300 W 2) 3300 W 3) 4600 W 4) 6000 W

Bemessungsfrequenz

Rated frequency

50 Hz

Technische Daten
Technical data

AC2 - Generator / Netz : AC2 - Generator / Grid :

Nennspannung

Nominal Voltage

AC 230 V

Max. Nennstrom

AC 50 A

Max. rated current

11500 W

Nennleistung Rated power

Nennfrequenz Rated frequency 50 Hz

Fortsetzung siehe Blatt 3 / continued on page 3

Ausweis-Nr. / Blatt / Certificate No. Page 40034343 3

Name und Sitz des Genehmigungs-Inhabers / Name and registered seat of the Certificate holder SMA Solar Technology AG, Sonnenallee 1, 34266 Niestetal

Aktenzeichen / *File ref.* 4383900-3971-0004 / 185844 / ET2 / GTF

letzte Änderung / updated Datum / Date 2014-10-24 2012-02-07

Dieses Blatt gilt nur in Verbindung mit Blatt 1 des Zeichengenehmigungsausweises Nr. 40034343. This supplement is only valid in conjunction with page 1 of the Certificate No. 40034343.

Technische Daten DC - Batterie : Technical data DC - Battery :

Bemessungsspannung

Rated voltage

DC 48 V

Bemessungsstrom Entladung / Discharge:
Rated current 1) DC 51 A 2) DC 75 A
3) DC 103 A 4) DC 136 A

Ladung / Charge:
1) DC 45 A 2) DC 63 A
3) DC 90 A 4) DC 115 A

Zusätzliche Angaben Additional information Phasenwinkel / power factor cos phi: -1...+1

Zulässige Umgebungstemperatur Max. ambient temperature

von -25 °C bis +60 °C from -25 °C to +60 °C

Schutzart

Degree of protection

IP54

1

Schutzklasse

PAK 01.4-08

Class

Remark

Das Produkt entspricht den Anforderungen gemäß PAK-Dokument ZEK 01.4-08.

PAH 01.4-08 The product is in accordance with the requirements of

PAH-document ZEK 01.4-08.

Anmerkung Die Inselnetzwechselrichter sind geeignet zum Anschluss an die

feste Installation gemäß Überspannungskategorie III.

The Off Grid Inverter is suitable for the connection to fixed

electrical installations according overvoltage category III.

Dieser Zeichengenehmigungs-Ausweis bildet eine Grundlage für die EG-Konformitätserklärung und CE-Kennzeichnung durch den Hersteller oder dessen Bevollmächtigten und bescheinigt die Konformität mit den grundlegenden Schutzanforderungen der EG-Niederspannungsrichtlinie 2006/95/EG mit ihren Änderungen. This Marks Approval is a basis for the EC Declaration of Conformity and the CE Marking by the manufacturer or his agent and proves the conformity with the essential safety requirements of the EC Low-Voltage Directive 2006/95/EC including amendments.

VDE Prüf- und Zertifizierungsinstitut GmbH VDE Testing and Certification Institute Fachgebiet ET2 Section ET2

Ausweis-Nr. / Certificate No. 40034343

Beiblatt / Supplement

Name und Sitz des Genehmigungs-Inhabers / Name and registered seat of the Certificate holder SMA Solar Technology AG, Sonnenallee 1, 34266 Niestetal

Aktenzeichen / File ref. 4383900-3971-0004 / 185844 / ET2 / GTF letzte Änderung / updated 2014-10-24

Datum / Date 2012-02-07

Dieses Beiblatt ist Bestandteil des Zeichengenehmigungsausweises Nr. 40034343. *This supplement is part of the Certificate No. 40034343.*

PV-Wechselrichter

Power Converter for Photovoltaic

Sunny Island Inselnetzwechselrichter

Sunny Island Off Grid Inverter

Fertigungsstätte(n)
Place(s) of manufacture

Referenz/Reference 30010913

SMA Solar Technology AG

Sonnenallee 1

D-34266 NIESTETAL

VDE Prüf- und Zertifizierungsinstitut GmbH VDE Testing and Certification Institute Fachgebiet ET2 Section ET2

Ausweis-Nr. / Certificate No. 40034343

Infoblatt / Info sheet

Name und Sitz des Genehmigungs-Inhabers / Name and registered seat of the Certificate holder SMA Solar Technology AG, Sonnenallee 1, 34266 Niestetal

Aktenzeichen / *File ref.* 4383900-3971-0004 / 185844 / ET2 / GTF

letzte Änderung / updated 2014-10-24

Datum / Date 2012-02-07

 $\hbox{Dieses Blatt gilt nur in Verbindung mit Blatt 1 des Zeichengenehmigungsausweises Nr.~40034343}.$

This supplement is only valid in conjunction with page 1 of the Certificate No. 40034343.

Genehmigung zum Benutzen des auf Seite 1 abgebildeten markenrechtlich geschützten Zeichens des VDE:

Grundlage für die Benutzung sind die Allgemeinen Geschäftsbedingungen (AGB) der VDE Prüf- und Zertifizierungsinstitut GmbH (www.vde.com\AGB-Institut). Das Recht zur Benutzung erstreckt sich nur auf die bezeichnete Firma mit den genannten Fertigungsstätten und die oben aufgeführten Produkte mit den zugeordneten Bezeichnungen. Die Fertigungsstätte muss so eingerichtet sein, dass eine gleichmäßige Herstellung der geprüften und zertifizierten Ausführung gewährleistet ist.

Die Genehmigung ist so lange gültig wie die VDE-Bestimmungen gelten, die der Zertifizierung zu- grunde gelegen haben, sofern sie nicht auf Grund anderer Bedingungen aus der VDE Prüf- und Zertifizierungsordnung (PM102) zurückgezogen werden muss.

Der Gültigkeitszeitraum einer VDE-GS-Zeichengenehmigung kann auf Antrag verlängert werden. Bei gesetzlichen und / oder normativen Änderungen kann die VDE-GS-Zeichengenehmigung ihre Gültigkeit zu einem früheren als dem angegebenen Datum verlieren.

Produkte, die das Biozid Dimethylfumarat (DMF) enthalten, dürfen gemäß der Kommissionsent- scheidung 2009/251/EG nicht mehr in den Verkehr gebracht oder auf dem Markt bereitgestellt werden.

Der VDE-Zeichengenehmigungsausweis wird ausschließlich auf der ersten Seite unterzeichnet.

Approval to use the legally protected Mark of the VDE as shown on the first page:

Basis for the use are the general terms and conditions of the VDE Testing and Certification Institute (www.vde.com\terms-institute). The right to use the mark is granted only to the mentioned company with the named places of manufacture and the listed products with the related type references. The place of manufacture shall be equipped in a way that a constant manufacturing of the certified construction is assured.

The approval is valid as long as the VDE specifications are in force, on which the certification is based on, unless it is withdrawn according to the VDE Testing and Certification Procedure (PM102E).

The validity period of a VDE-GS-Mark Approval may be prolonged on request. In case of changes in legal and / or normative requirements, the validity period of a VDE-GS-Mark Approval may be shortened.

Products containing the biocide dimethylfumarate (DMF) may not be marketed or made available on the EC market according to the Commission Decision 2009/251/EC.

The approval is solely signed on the first page.

Prüfstelle Elektrotechnik

BG ETEM, Prüfstelle Elektrotechnik, Gustav-Heinemann-Ufer 130, 50968 Köln

SMA Solar Technology AG Sonnenallee 1 34266 Niestetal

Ihr Zeichen:

Ihre Nachricht vom:

Unser Zeichen UB.010.17/ 14-096 PI/Wi

(bitte stets angeben):

Ansprechperson: Herr Pohl

Fax: +49 221-3778-6322

Datum: 07.05.2014

Unbedenklichkeitsbescheinigung 14007 (Prüfschein)

Erzeugnis: NA-Schutz mit Kuppelschalter

Typ:

SI 3.0M-11, SI 4.4M-11 SI 6.0H-11, SI 8.0H-11

Bestimmungsgemäße Verwendung:

Typgeprüfte Schutzeinrichtung für den Kuppelschalter als integrierter NA-Schutz und Einrichtung zur Zuschaltung der

Erzeugungsanlage.

Der NA-Schutz ist Bestandteil des Batteriewechselrichter-

"Erzeugungsanlagen am Niederspannungsnetz - Technische

Systems Sunny Island

SI 3.0M-11, SI 4.4M-11, SI 6.0H-11, SI 8.0H-11

Prüfgrundlagen:

VDE-AR-N 4105:2011-08 Abschnitt 6 und 8.3.1 erster Satz

Mindestanforderungen für Anschluss und Parallelbetrieb von Erzeugungsanlagen am Niederspannungsnetz"

Das in 10.2012 (Az. UB.010.17/11-329) und 05.2013 mit Bericht Az. UB.010.17/13-052 geprüfte sowie in KW 19, 2014 nachgeprüfte Sicherheitskonzept des o. g. Erzeugnisses entspricht den zum Zeitpunkt der Ausstellung dieser Bescheinigung geltenden sicherheitstechnischen Anforderungen für die aufgeführte bestimmungsgemäße Verwendung.

Die Unbedenklichkeitsbescheinigung gilt befristet bis:

31.12.2018

Leiter der Prüfstelle Elektrotechnik

BG ETEM, Prüfstelle Elektrotechnik, Gustav-Heinemann-Ufer 130, 50968 Köln

SMA Solar Technology AG Sonnenallee 1 34266 Niestetal Your reference: Your correspondence of:

Our reference: UB.010.17/14-096 PI/Wi

(Please quote in all enquiries):

Official in charge: Mr. Pohl

Fax: +49 221 3778-6322 Date: 07.05.2014

Certificate of Compliance 14007 (Test Certificate)

Product: Network and system protection (NA-protection)

Type: SI 3.0M-11, SI 4.4M-11 SI 6.0H-11, SI 8.0H-11

Intended use: Type-tested protection device for the tie breaker as integrated

or central NA and protection device for circuit to the generating

plant.

The NA protection is part of the battery inverter system

Sunny Island SI 3.0M-11, SI 4.4M-11, SI 6.0H-11, SI 8.0H-11

Testing performed in accordance with:

VDE-AR-N 4105:2011-08 Section 6 and 8.3.1 first sentence Generators connected to the low-voltage distribution network-Technical requirements for the connection to and parallel operation with low-voltage distribution networks.

The safety concept assessed in the test report dated 2012-10, Az.: UB.010.17/11-329 and 2013-05, Az.: UB.010.17/13-052 fulfills the technical safety requirements in force at the time of issue of the present certificate for the intended use indicated.

The validity of this certificate of compliance shall cease no later than:

31 December 2018

Martin Mehlem

Head of the test body Electrical Engineering

BG ETEM, Prüfstelle Elektrotechnik, Gustav-Heinemann-Ufer 130, 50968 Köln

SMA Solar Technologie AG Sonnenallee 1 34266 Niestetal Ihr Zeichen:

Ihre Nachricht vom:

Unser Zeichen UB.010.17/14-096 PI/Wi

(bitte stets angeben):

Ansprechperson: Herr Pohl

Fax: +49 221 3778-6322

Datum: 07.05.2014

Unbedenklichkeitsbescheinigung 14006 (Prüfschein)

Erzeugnis:

Ersatzstromsystem mit optionaler Eigenverbrauchsopti-

mierung

Typ:

SI 3.0M-11, SI 4.4M-11

SI 6.0H-11, SI 8.0H-11

Bestimmungsgemäße Verwendung:

Inselnetzfähiges Wechselrichter System (Umschaltbare Versorgungsalternative) mit automatischem verriegelten Umschalter und selbsttätiger Schaltstelle als Sicherheits-

schnittstelle zwischen einem Inselnetz und dem

öffentlichen Niederspannungsnetz.

Optional kann die Energie vom Batteriewechselrichter-System in das öffentliche Versorgungsnetz eingespeist sowie im Inselbetrieb die 3 Außenleiter gekoppelt werden.

Prüfgrundlagen:

Siehe Anlage 1

Das mit Bericht UB.010.17/13-052 vom 24.06.2013 und in KW 19, 2014 nachgeprüfte Sicherheitskonzept des o.g. Erzeugnisses entspricht bezüglich der in der Anlage spezifizierten Sicherheitsfunktionen den zum Zeitpunkt der Ausstellung dieser Bescheinigung geltenden sicherheitstechnischen Anforderungen für die aufgeführte bestimmungsgemäße Verwendung.

Die Unbedenklichkeitsbescheinigung gilt befristet bis:

31.12.2018

Martin Mehlem

Leiter der Prüfstelle Elektrotechnik

Anlage 1 zur Unbedenklichkeitsbescheinigung 14006 SMA Sunny Island SI 3.0M-11 / SI 4.4 M-11/ SI 6.0H-11/ SI 8.0H-11vom 07.05.2014

Prüfgrundlagen:

DIN VDE 0126-1-1:2013-08 "Selbsttätige Schaltstelle zwischen einer netzparallelen

Erzeugungsanlage und dem öffentlichen Nieder-

spannungsnetz"

VDE-AR-N 4105:2011-08 "Erzeugungsanlagen am Niederspannungsnetz -

Technische Mindestanforderungen für Anschluss und Parallelbetrieb von Erzeugungsanlagen am Niederspan-

nungsnetz"

DIN VDE 0100-410:2007-06 "Errichten von Niederspannungsanlagen -

Schutzmaßnahmen - Schutz gegen elektrischen Schlag"

DIN VDE 0100-551:2011-06 "Elektrische Anlagen von Gebäuden -

Niederspannungs-Stromerzeugungsanlagen"

Errichtungsbedingungen:

Vor Inbetriebnahme ist mit dem VNB abzuklären ob die Option "Einspeisung der Batterie-Energie in das öffentliche Versorgungsnetz" aktiviert werden darf.

Im Ersatzstrombetrieb (sowohl ein- als auch dreiphasig möglich) erfolgen eine allpolige Trennung vom Versorgungsnetz und gleichzeitig eine zuverlässige Verbindung des Neutralleiters des Wechselrichters mit dem Schutzpotentialausgleichssystem.

Der Schutz bei indirektem Berühren in der nachgeordneten Verbraucheranlage erfolgt im Ersatzstrombetrieb durch automatische Abschaltung unter Verwendung einer Sicherung Typ: B16 oder C6 oder einer Fehlerstrom-Schutzeinrichtungen (RCD).

Wird kein zentraler NA-Schutz verwendet, der auf einen zentralen Kuppelschalter wirkt, müssen alle Erzeugungseinheiten der Erzeugungsanlage, die netzparallel zusammen mit dem Batteriewechselrichter-System zur Stromversorgung bei Netzausfall betrieben werden, über einen integrierten Entkupplungsschutz (integrierter NA-Schutz und integrierter Kuppelschalter) nach VDE-AR-N 4105:2011-08 verfügen.

Sicherheitsfunktionen:

Automatische Umschaltung und Verriegelung zwischen der Allgemeinen Stromversorgung und der Ersatzstromversorgungsanlage mit allpoliger Trennung.

Verhinderung der Rückspeisung in das öffentliche Netz bei Ersatzstrombetrieb.

Translation

In any case, the german original shall prevail.

BG ETEM, Prüfstelle Elektrotechnik, Gustav-Heinemann-Ufer 130, 50968 Cologne, Germany

SMA Technologie AG Sonnenallee 1 34266 Niestetal, Germany Your initials: Your message from:

Our initials UB.010.17/14-096 PI/Wi

(please specify always):

Point of contact: Mr. Pohl

Fax: +49 221 3778-6322 Date: 07. May.2014

Certificate of Non-objection 14006 (Test certificate)

Product: Backup power system with optional self-consumption

optimisation

Type: SI 3.0M-11, SI 4.4M-11

SI 6.0H-11, SI 8.0H-11

Intended Isolated network-capable inverter system (switchable alternative supply) with automatically regulated change-over

switch and self-actuating disconnection device as a safety interface between the isolated network and the public low-

voltage grid.

The energy from the battery inverter system can be option-

ally fed into the public power supply grid and can be

coupled to the 3 outer conductors during isolated operation.

Test specifications: See Attachment 1

The safety concept for the product referred to above as described in the report UB.010.17/ 13-052 from 24 June 2013 and reviewed in CW 51/2013 and 19/2014, and with regard to the system-specific safety functions, corresponds to the applicable safety-related requirements for its intended proper usage at the time of certificate issuance.

This Certificate of Non-objection is valid until:

31 Dec. 2018

Martin Mehlem

usage:

Electrical engineering testing facility supervisor

Annex 1 to the Certificate of Non-objection 14006 SMA Sunny Island SI 3.0M-11 / SI 4.4 M-11/ SI 6.0H-11/ SI 8.0H-11dated 07.05.2014

Test specifications:

DIN VDE 0126-1-1:2013-08 "Automatic disconnection device between a grid-parallel

generator and the public low-voltage grid"

VDE-AR-N 4105:2011-08 "Power generation systems connected to the low-voltage

distribution network - Technical minimum requirements for the connection and parallel operation with low-voltage dis-

tribution networks"

DIN VDE 0100-410:2007-06 "Low-voltage electrical installations - Protective measures -

Protection against electric shock"

DIN VDE 0100-551:2011-06 "Electrical installations of buildings - Low-

voltage generation systems"

Installation requirements:

Prior to commissioning, it must be clarified with the distribution network operator whether the option, "battery energy feed into the public power supply grid", can be activated.

During backup power system operations (both single- and three-phase are possible), an all-pole disconnection from the supply grid is made, while, simultaneously, a reliable connection between the neutral conductor of the inverter and the protection potential compensation system is made.

Protection in the event of indirect physical contact with subordinate consumer takes place in backup power system operations by means of automatic shutdown through a line circuit breaker, Type: B16 or C6 or residual current protection devices (RCD).

When a central network and system protection that acts upon a central coupler breaker is not in use, all generating units in the generation plant, that would operate parallel to the grid together with the battery inverter system to supply power in the event of a grid failure, must be configured with integrated decoupling protection (network and system protection, as well as an integrated coupler breaker) in accordance with VDE-AR-N 4105:2011-08.

Safety functions:

Automatic switching and locking between the general power supply and the backup power supply system with all-pole disconnection.

Prevention of reverse feeding into the public grid during backup system operations.

DER GEWERBESPEICHER

Partner von:

www.sunnyportal.com

Eigenverbrauch

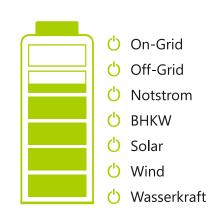
Bei Tag und Nacht kann der selbsterzeugte Strom verbraucht werden. Der Weg zur Autarkie ist bereits heute schon möglich.

Sicherheit

Die Batterien enthalten keine umweltschädlichen Schwermetalle und sind eigensicher

Recycling

TESVOLT Lithium-Batterien sind an ein Rücknahmesystem für Batterien angeschlossen.



SYSTEM

www.tuv.com

ON-GRID

OFF-GRID

Batteriesystem mit SMA	Li	10	Li 20		Li	Li 30		Li 40		Li 60		Li 120	
Energiegehalt (C1) [kWh]	1	10	20		3	30		40		60		120	
Nennbelade-/ entladeleistung DC [kW]	4	-,6	4	4,6		4,6 13,8		3,8	18		18		
Optionale Nennbelade-/ entladeleistung AC [kW]	max	c. 6,9	max	. 13,8	ma	x. 18	max	c . 18	max	c. 36	max	x. 72	
Entladetiefe [DoD]	70%	90%	70%	90%	70%	90%	70%	90%	70%	90%	70%	90%	
Nutzkapazität [kWh]	7	9	14	18	21	27	28	36	42	54	84	108	
Anzahl der Zyklen	8000	5000	8000	5000	8000	5000	8000	5000	8000	5000	8000	5000	
Beladezeit bei Nennleistung [h]	1,6	2,0	3,1	4,0	4,7	6,0	2,1	2,7	2,4	3,1	4,8	6,1	
Entladezeit bei Nennleistung [h]	1,6	2,0	3,1	4,0	4,7	6,0	2,1	2,7	2,4	3,1	4,8	6,1	
Selbstentladung der Batterie	< 3% pr	ro Monat	< 3% pro Monat		< 3% pi	< 3% pro Monat		< 3% pro Monat		< 3% pro Monat		< 3% pro Monat	
Geeignete PV-Anlagen Leistung [kWp]	al	o 5	at	ab 10		ab 15		ab 20		ab 20		ab 30	
Max. Systemwirkungsgrad	90	0%	9	0%	90	90%		90%		90%		90%	
Eigenverbrauch (Batterie & BMS) [W]		8		8	8		8		8		1	6	
Batteriesystem													
Elektrische Ladung (C1) [Ah]	2	200		400		600		00	1200		2400		
Lade- und Entladestrom [A] / max. 3 Sec. [A]	150	/ 300	300 / 800		375	375 / 800		375 / 800		375 / 800		375 / 800	
DC Nennspannung [V]	5	1,2	5	1,2	5	51,2		51,2		51,2		51,2	
System	1-phasig	/ 3-phasig	1-phasig / 3-phasig		1-phasig	/ 3-phasig	1-phasig	1-phasig / 3-phasig		1-phasig / 3-phasig		1-phasig / 3-phasig	
Notstromfunktion	opti	ional	optional		opti	optional		optional		optional		onal	
Allgemeine Daten (Batterieschrank)													
Dimensionen (L x B x H) [mm]	500 x 60	00 x 1000	780 x 950 x 1900		780 x 95	50 x 1900	780 x 9	50 x 1900	780 x 950 x 1900		2x (780 x 950 x 1900)		
Gesamtgewicht [kg]	2	30	5	20	6	640		760		990		80	
Sicherheit	Beschreibung		Installationsbeding	ungen	Bes	chreibung	Gewähr	leistung (Batterie)		Beschreib	una		

 Sicherheit
 Beschreibung

 Zertifizierungen
 TÜV / FNN / CE

 Anschlusszulassung
 VDE AR-N-4105

 Lebensdauer (25°C) 90% DoD
 5.000 Zyklen

 Lebensdauer (25°C) 70% DoD
 8.000 Zyklen

 Installationsbedingungen
 Beschreibung

 Aufstellungsort
 Innenbreich

 Schutzklasse
 IP 20

 Lagerungstemperatur
 von -20°C bis 60°C

 Arbeitstemperatur
 von 0°C bis 40°C

Gewährleistung (Batterie)	Beschreibung
Gewährleistung	2 Jahre
Zeitwertersatzgarantie*	7 Jahre
Leistungsgewährleistung	10 Jahre
Recycling	kostenlose Rücknahme

CE

*nur in Verbindung mit KfW Programm

MA, Sunny Island sind in vielen Ländern der Welt eingetragene Warenzeichen der SMA Solar Technoloy AG.